top of page

References

​

  1. Ball, P. (2014). The Scientific Problem That Must Be Experienced – To understand turbulence we need the intuitive perspective of art.

  2. Iaccarino, G. (2012). Turbulence and Computing: Beauty and the Beast.

  3. Ecke, R. (2005). The turbulence problem. Los AlamosScience, 29, 124-141.

  4. Da Vinci, L. (2018). Retrieved May 14 2018, from https://en.wikipedia.org/wiki/Leonardo_da_Vinci.

  5. Richardson, L. F. (1922). Weather prediction by numerical process. Cambridge University Press

  6. Basic, J. (2016). Turbulent history of fluid mechanics.

  7. Thirriot, C. (1987). Mouvement brownien, turbulence et chaîne de Markov. La Houille Blanche, (7-8), 573-580.

  8. Pedrizzetti, G. & Novikov, E. A. (1994). OnMarkov modelling of turbulence. Journal of Fluid Mechanics, 280, 69-93.

  9. Tatsumi, T. (2000).Turbulence as a complex mechanical-system. Applied Energy, 67(1-2), 91-116.

  10. Kolmogorov, A. N. (1941). The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers. Dokl. Akad. Nauk SSSR, 30, 299-303.

  11. Kolmogorov, A. N. (1941). Dissipation of Energy in the Locally Isotropic Turbulence. Dokl. Akad. Nauk SSSR, 32, 19-21.

  12. Kolmogorov, A. N. (1962). A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. Journal of Fluid Mechanics, 13(1), 82-85.

  13. Goto, S., & Vassilicos, J. C. (2016). Local equilibrium hypothesis and Taylor’s dissipation law. Fluid Dynamics Research, 48(2), 1-17.

  14. Terrapon, V. E. (2018). Turbulence and its impact on technology, (Unpublished lecture Slides). University of Liège, Belgium.

  15. McDonough, J. M. (2007). Introductory Lectures on Turbulence: Physics, Mathematics and Modeling.

  16. Laufer, J. (1975). New Trends in Experimental Turbulence Research. Annual Review of Fluid Mechanics, 7, 307-326.

  17. Kline, S. J. (1967). The structure of turbulent boundary layers. Journal of Fluid Mechanics, 30(4), 741-773.

  18. Roshko, A., & Brown, G. L. (1974). On density effects and large structure in turbulent mixing layers. Journal of Fluid Mechanics, 64(4), 775-816.

  19. Browand F. K. & Winant C. D. (1973). Laboratory observations of shear-layer instability in a stratified fluid, Boundary-Layer Meteorol, 5(1-2), 67-77.

  20. Prandtl, L. (1904). ÜberFlüssigkeitsbewegungbeisehrkleinerReibung. Vier Abhandlungen zurHydrodynamik und Aerodynamik. Universitätsverlag Göttingen, 1-8.

  21. Prandtl, L. (1918). Tragflügeltheorie, I. und II.Mitteilung. Vier Abhandlungen zurHydrodynamik und Aerodynamik. Universitätsverlag Göttingen, 9-67.

  22. Prandtl, L. (1921). Applications of Modern Hydrodynamics to Aeronautics.

  23. Tani, I. (1977). The history of boundary layer theory. Annual Reviews of Fluid Mechanics, 9, 87-111.

  24. Chapman, G. T., & Tobak, M. (1985). Observations, Theorical Ideas, and Modeling of Turbulent Flows – Past, Present, and Future. Theoretical Approaches to Turbulence, 19-49.

  25. Rott, N. (1990). Note on the history of the Reynolds Number. Annual Review of Fluid Mechanics, 22(1), 1-12.

  26. Foias, C., Manley, O., Rosa, R., & Temam, R. (2001). Navier-Stokes Equations and Turbulence. Cambridge University Press, 83, 1-20.

  27. Anderson, J. D. (2005). Ludwig Prandtl’s Boundary Layer. Physics Today, 58(12), 42-48.

  28. Brandt, A. (1977). Multi-Level Adaptive Solutions to Boundary-Value Problems. Mathematics of Computation, 31(138), 333-390.

  29. Frisch, U. (1995). Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.

  30. Kaneda, Y., Ishihara, T., Yokokawa, M., Irakura, K., & Uno, A. (2003). Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Physics of Fluids, 15(2).

  31. Lynch, P. (2006). The Emergence of Numerical Weather Prediction: Richardson's Dream. Cambridge University Press.

  32. Moin, P., & Mahesh, K. (1998). Direct Numerical Simulation: A Tool in Turbulence Research. Annual Review of Fluid Mechanics, 30(1), 539-578.

  33. Vulpiani, A. (2014). Lewis Fry Richardson: scientist, visionary and pacifist. Lettera Matematica, 2(3), 121-128.

  34. Shang, J. S. (2004). Three decades of accomplishments in computational fluid dynamics. Progress in Aerospace Sciences, 40(3), 173-197.

  35. She, Z. S., Chen, S., Doolen, G., Kraichnan, R. H., & Orszag, S. A. (1993). Reynolds number dependence of isotropic Navier-Stokes turbulence. Physical review letters, 70(21).

  36. Strawn, G. & Strawn, C. (2015). The Father of Supercomputing: Seymour Cray. IT Professional, 17(2), 58-60.

  37. Yang, Z. (2015). Large-eddy simulation: Past, present and the future. Chinese Journal of Aeronautics, 28(1), 11-24.

  38. Lemons, D. S. (2002). An Introduction to Stochastic Processes in Physics. The Johns Hopkins University Press.

  39. Anderson, C. (2015). Lagrangian particle models are three-dimensional models for the simulation of airborne pollutant dispersion, able to account for flow and turbulence space-time. Retrieved from http://slideplayer.com/slide/9167431/.

  40. Thomson, D. J., & Wilson, J. D. (2013). History of Lagrangian stochastic models for turbulent dispersion. Lagrangian modeling of the atmosphere, 19-36.

  41. Stohl, A., Prata, A. J., Eckhardt, S., Clarisse, L., Durant, A., Henne, S., ... & Stebel, K. (2011). Determination of time-and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption. Atmospheric Chemistry and Physics, 11(9), 4333-4351

  42. Ganesan, A. L., Manning, A. J., Grant, A., Young, D., Oram, D. E., Sturges, W. T., ... & O'Doherty, S. (2015). Quantifying methane and nitrous oxide emissions from the UK and Ireland using a national-scale monitoring network. Atmospheric Chemistry and Physics, 15(11), 6393-6406.

  43. Estrada, A., & Leachman, S. (2015). UCSB researchers join forces, combine expertise to help assess potential impacts of Refugio oil spill. Retrieved May 22 2015, from http://www.news.ucsb.edu/2015/015452/expert-respons.

  44. Barrow-Green, J. (1997). Poincaré and the Three Body Problem. United States of America: American Mathematical Society.

  45. Poincaré, H. (1908). Science et méthode. Paris : E. Flammarion.

  46. Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20, 130-141

  47. Ruelle, D. (1981). Differentiable Dynamical Systems and the Problem of Turbulence. Bulletin of the American Mathematical Society, 5(1), 29-42.

  48. Pomeau, Y., & Manneville, P. (1980). Intermittent Transition to Turbulence in Dissipative Dynamical Systems. Communications in Mathematical Physics, 74(2), 189-197.

  49. Landau, L. D., & Lifshitz, E. M. (1959). Fluid Mechanics(2nd ed.). Oxford: Pergamon Press.

  50. Wang, G. R., Yang, F., & Zhao, W. (2014).There can be turbulence in microfluidics at low Reynolds number. Lab on a Chip, 14(8), 1452-1458.

  51. Gould, P. (2004). Microfluidics realizes potential. Materials today, 7(7-8), 48-52.

  52. Chang, CC., & Yang, R. J. (2007). Electrokinetic mixing in microfluidic systems. Microfluidics and Nanofluidics, 3(5), 501–525.

  53. Kuang, C., & Wang, G. (2010). A novel far-field nanoscopicvelocimetry for nanofluidics. Lab on a Chip, 10(2), 240-245.

  54. Bruneau, C. H., Creusé, E., Depeyras, D., Gilliéron, P., & Mortazavi, I. (2010). Coupling active and passive techniques to control the flow past the square back Ahmed body. Computers & Fluids, 39(10), 1875-1892.

  55. Bruneau, C. H., & Mortazavi, I. (2008). Numerical modelling and passive flow control using porous media. Computers & Fluids, 37(5), 488-498.

  56. Gilliéron, P., & Chometon, F. (1999). Modelling of stationary three-dimensional separated air flows around an Ahmed reference model. EDP Sciences, 7, 173-182.

  57. Crawford, T. L., & Dobosy, R. J. (1992). A sensitive fast-response probe to measure turbulence and heat flux from any airplane. Boundary-Layer Meteorology, 59(3), 257-278.

  58. Kühnen, J., Song, B., Scarselli, D., Budanur, N.B., Riedl. M., Willis, A.P, Avila, M., & Hof, B. (2018). Destabilizing turbulence in pipe flow. Nature Physics, 14, 386–390.

  59. Kasagi, N., Suzuki, Y., & Fukagata, K. (2009). Microelectromechanical systems-based feedback control of turbulence for skin friction reduction. Annual Review of Fluid Mechanics, 41, 231-251.

  60. Högberg, M., Bewley, T. R., & Henningson, D. (2003). Relaminarization of ReT=100 turbulence using gain scheduling and linear state-feedback control. Physics of fluids, 15(11), 3572-3575.

  61. Bjorn, F. (2018). Bjorn’s Corner: Aircraft drag reduction. Retrieved May 14, 2018, from https://leehamnews.com/2018/01/05/bjorns-corner-aircraft-drag-reduction-part-11/.

  62. Jahanmiri, M. (2011). Aircraft Drag Reduction: An Overview. Chalmers University of Technology.

  63. Walsh, M. J., Anders, J. B., & Hefner, J. N. (1987). U.S. Patent No. 4,706,910. Washington, DC: U.S. Patent and Trademark Office.

  64. Klocke, F., Feldhaus, B., & Mader, S. (2007). Development of an incremental rolling process for the production of defined riblet surface structures. Production Engineering, 1(3), 233–237.

  65. Aristodemou, E., Boganegra, L. M., Mottet, L., Pavlidis, D., Constantinou, A., Pain, C., … & ApSimon, H. (2018). How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood. Environmental Pollution, 233,782-796.

  66. Zhiyin, Y. (2015). Large-eddy simulation: past, present and the future. Chinese Journal of Aeronautics, 28(1), 11-24.

  67. Paul, E. L., Atiemo-Obeng, V. A., & Kresta, S. M. (Eds.). (2004). Handbook of Industrial Mixing: Science and Practice. John Wiley & Sons.

  68. Chaté, H., Villermaux, E., & Chomaz, J. M. (1999). Mixing: chaos and turbulence. Springer Science & Business Media.

  69. Fedorenko, V., Genilloud, O., Horbal, L., Marcone, G. L., Marinelli, F., Paitan, Y., & Ron, E. Z. (2015). Antibacterial discovery and development: from gene to product and back. BioMed Research International, 2015.

  70. Kasat, G. R., Khopkar, A. R., Ranade, V. V., & Pandit,  A. B. (2008). CFD simulation of liquid-phase mixing in solid-liquid stirred reactor. Chemical Engineering Science, 63(15), 3877-3885.

  71. Kraume, M. (1992). Mixing times in stirred suspensions. Chemical engineering& technology, 15(5), 313-318.

  72. Yamazaki, H., Tojo, K., & Miyanami, K. (1986). Concentration profiles of solids suspended in a stirred tank. Powder Technology, 48(3), 205-216.

  73. Lubitz, W. D. (2014). Impact of ambient turbulence on performance of a small wind turbine. Renewable Energy, 61, 69-73.

  74. Tummala, A., Velamati, R. K., Sinha, D. K., Indraja, V., & Krishna, V. H. (2016). A review on small scale wind turbines. Renewable and Sustainable Energy Reviews, 56, 1351-1371.

  75. Pagnini, L. C., Burlando, M., & Repetto, M. P. (2015). Experimental power curve of small-size wind turbines in turbulent urban environment. Applied Energy, 154, 112–121.

  76. Padmanabhan, K. K. (2013). Study on increasing wind power in buildings using TRIZ Tool in urban areas. Energy and Buildings, 61, 344–348.

  77. https://commons.wikimedia.org/wiki/File:Reynolds_fluid_turbulence_experiment_1883.jpg

  78. https://www.comsol.com/blogs/which-turbulence-model-should-choose-cfd-application/

  79. https://openi.nlm.nih.gov/detailedresult.php?img=PMC4083790_rspb20140703-g1&req=4

  80. http://www.computerhistory.org/collections/catalog/102627374

  81. https://www.flickr.com/photos/ironypoisoning/12220693513

  82. https://www.heliciel.com/en/helice/calcul-helice-aile/Theorie-%20ligne%20portante-Prandtl.htm

  83. http://www.boldmethod.com/learn-to-fly/aerodynamics/vortex-generators/

  84. https://aviationbenefits.org/case-studies/those-things-on-the-wings/

  85. NASA Langley Research Center

  86. https://lebbeuswoods.wordpress.com/2010/12/03/da-vincis-blobs/

  87. http://pivcourse.dlr.de

  88. https://www.imperial.ac.uk/polymers-and-microfluidics/

  89. https://utilitymagazine.com.au/working-together-to-benefit-small-water-utilities/

  90. https://www.windpowerengineering.com

  91. https://en.wikipedia.org/wiki/Computational_fluid_dynamics

  92. https://en.wikipedia.org/wiki/Vortex

  93. https://en.wikipedia.org/wiki/Reynolds_number

  94. https://en.wikipedia.org/wiki/Boundary_layer

  95. Durbin & Pettersson-Reif (2001). Statistical Theory and Modeling for Turbulent Flows, 2nd ed. (p.7)

  96. Milton Van Dyke (1982). An album of fluid motion.

  97. Davidson (2004). Turbulence, An introduction for Scientists and Engineers (p.76-79)

1_Ball_2014
2_Iccarino_2012
15_McDonough_2007
18_Roshko_et_al_1974
21_Prandtl_1928
26_Foias_et_al_2001
35_She_et_al_1993
42_Manning_et_al_2015
43_Estrada_et_al_2015
54_Bruneau_et_al_2010
60_Hogberg_et_al_2003
61_Bjorn_2018
67_Paul_et_al_2004
3_Ecke_2005
4_DaVinci_2018
5_Richardson_1922
6_Basic_2016
7_Thirriot_1987
8_Pedrizzetti_e_al_1994
9_Tatsumi_2000
10_Kolgomorov_1941a
11_Kolgomorov_1941c
12_Kolgomorov_1962
13_Goto_et_al_2016
14_Terrapon_2018
16_Laufer_1975
17_Kleine_et_al_1967
19_Browand_et_al_1973
20_Prandtl_1904
22_Prandtl_1921
23_Tani_1977
24_Chapman_et_al_1985
25_Rott_1990
27_Anderson_2005
28_Brandt_1977
29_Frisch_1995
30_Kaneda_et-al_2003
31_Lynch_2006
32_Moin_et_al_1998
33_Vulpiani_2014
34_Shang_2004
36_Strawn_2015
37_Yang_2015
38_Lemons_2008
39_Anderson_2015
40_Thomson_et_al_2013
41_Stohl_et_al_2011
44_Barrow_Green_1997
45_Poincare_1908
46_Lorenz_1963
47_Ruelle_1981
48_Pomeau_et_al_1980
49_Landau_et_al_2014
50_Wang_et_al_2014
51_Gould_2004
52_Chang_et_al_2010
53_Kuang_et_al_2010
55_Bruneau_et_al_2008
56_Gillieron_et_al_1999
57_Crawford_et_al_1922
58_Kuhnen_et_al_2018
59_Kasagi_et_al_2009
62_Jahammini_2011
63_Walsh_et_al_1987
64_Klocke_et_al_1987
65_Aristodemou_et_al
66_Aristodemou_et_al_2018
68_Chate_et_al_1999
69_Fedorenko_et_al_2015
70_Kasat_et_al_2008
71_Kraume_1992
72_Yamazaki_et_al_1986
73_Lubitz_2014
74_Tummala_et_al_2016
75_Pagini_et_al_2015
76_Padmanabhan_2013
77_FigureI.2
78_FigureI.2-6
79_FigureI.2-7
80_Figure I.3-4
81_FigureII.1-2
82_FigureII.2-1
83_FigureII.2-4
84_FigureII.2-6
85_Intro
86_sectionI1
87_SectionI3
88_sectionII1
89_sectioII2
90_SectionII3
91_CFD
92_Vortex
93_reynoldsNumber
94_Boundary Layer

Turbulence in the type vortex from an airplane wing [85]

95_Durbin_and_Petterson
96_Milto_Van_Dyke
97_Davidson_2004
bottom of page